326 research outputs found

    Eigenvector-Based Centrality Measures for Temporal Networks

    Get PDF
    Numerous centrality measures have been developed to quantify the importances of nodes in time-independent networks, and many of them can be expressed as the leading eigenvector of some matrix. With the increasing availability of network data that changes in time, it is important to extend such eigenvector-based centrality measures to time-dependent networks. In this paper, we introduce a principled generalization of network centrality measures that is valid for any eigenvector-based centrality. We consider a temporal network with N nodes as a sequence of T layers that describe the network during different time windows, and we couple centrality matrices for the layers into a supra-centrality matrix of size NTxNT whose dominant eigenvector gives the centrality of each node i at each time t. We refer to this eigenvector and its components as a joint centrality, as it reflects the importances of both the node i and the time layer t. We also introduce the concepts of marginal and conditional centralities, which facilitate the study of centrality trajectories over time. We find that the strength of coupling between layers is important for determining multiscale properties of centrality, such as localization phenomena and the time scale of centrality changes. In the strong-coupling regime, we derive expressions for time-averaged centralities, which are given by the zeroth-order terms of a singular perturbation expansion. We also study first-order terms to obtain first-order-mover scores, which concisely describe the magnitude of nodes' centrality changes over time. As examples, we apply our method to three empirical temporal networks: the United States Ph.D. exchange in mathematics, costarring relationships among top-billed actors during the Golden Age of Hollywood, and citations of decisions from the United States Supreme Court.Comment: 38 pages, 7 figures, and 5 table

    Deforming baryons into confining strings

    Full text link
    We find explicit probe D3-brane solutions in the infrared of the Maldacena-Nunez background. The solutions describe deformed baryon vertices: q external quarks are separated in spacetime from the remaining N-q. As the separation is taken to infinity we recover known solutions describing infinite confining strings in N=1{\mathcal{N}}=1 gauge theory. We present results for the mass of finite confining strings as a function of length. We also find probe D2-brane solutions in a confining type IIA geometry, the reduction of a G_2 holonomy M theory background. The relation between these deformed baryons and confining strings is not as straightforward.Comment: 1+13 pages. LaTeX. 3 Figures. Factor of 2N fixed to N for the IIA background. Minor changes to tex

    Mind the gap: diversity and reactivity relationships among multihaem cytochromes of the MtrA/DmsE family

    Get PDF
    Shewanella oneidensis MR-1 has the ability to use many external terminal electron acceptors during anaerobic respiration, such as DMSO. The pathway that facilitates this electron transfer includes the decahaem cytochrome DmsE, a paralogue of the MtrA family of decahaem cytochromes. Although both DmsE and MtrA are decahaem cytochromes implicated in the long-range electron transfer across a ~300 Å (1 Å=0.1 nm) wide periplasmic ‘gap’, MtrA has been shown to be only 105 Å in maximal length. In the present paper, DmsE is further characterized via protein film voltammetry, revealing that the electrochemistry of the DmsE haem cofactors display macroscopic potentials lower than those of MtrA by 100 mV. It is possible this tuning of the redox potential of DmsE is required to shuttle electrons to the outer-membrane proteins specific to DMSO reduction. Other decahaem cytochromes found in S. oneidensis, such as the outer-membrane proteins MtrC, MtrF and OmcA, have been shown to have electrochemical properties similar to those of MtrA, yet possess a different evolutionary relationship.National Science Foundation (U.S.) (Grant MCB 0546323)National Science Foundation (U.S.) (Grant CHE 0840418)Research Corporation for Science Advancement (Scialog Award)National Institutes of Health (U.S.) (Grant F32GM904862

    Tree-mycorrhizal associations detected remotely from canopy spectral properties

    Get PDF
    A central challenge in global ecology is the identification of key functional processes in ecosystems that scale, but do not require, data for individual species across landscapes. Given that nearly all tree species form symbiotic relationships with one of two types of mycorrhizal fungi – arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi – and that AM- and ECM-dominated forests often have distinct nutrient economies, the detection and mapping of mycorrhizae over large areas could provide valuable insights about fundamental ecosystem processes such as nutrient cycling, species interactions, and overall forest productivity. We explored remotely sensed tree canopy spectral properties to detect underlying mycorrhizal association across a gradient of AM- and ECM-dominated forest plots. Statistical mining of reflectance and reflectance derivatives across moderate/high-resolution Landsat data revealed distinctly unique phenological signals that differentiated AM and ECM associations. This approach was trained and validated against measurements of tree species and mycorrhizal association across ~130 000 trees throughout the temperate United States. We were able to predict 77% of the variation in mycorrhizal association distribution within the forest plots (P \u3c 0.001). The implications for this work move us toward mapping mycorrhizal association globally and advancing our understanding of biogeochemical cycling and other ecosystem processes

    Multi-matrix models and emergent geometry

    Full text link
    Encouraged by the AdS/CFT correspondence, we study emergent local geometry in large N multi-matrix models from the perspective of a strong coupling expansion. By considering various solvable interacting models we show how the emergence or non-emergence of local geometry at strong coupling is captured by observables that effectively measure the mass of off-diagonal excitations about a semiclassical eigenvalue background. We find emergent geometry at strong coupling in models where a mass term regulates an infrared divergence. We also show that our notion of emergent geometry can be usefully applied to fuzzy spheres. Although most of our results are analytic, we have found numerical input valuable in guiding and checking our results.Comment: 1+34 pages, 4 figures. References adde

    The American Association for the Surgery of Trauma renal injury grading scale: Implications of the 2018 revisions for injury reclassification and predicting bleeding interventions.

    Get PDF
    BackgroundIn 2018, the American Association for the Surgery of Trauma (AAST) published revisions to the renal injury grading system to reflect the increased reliance on computed tomography scans and non-operative management of high-grade renal trauma (HGRT). We aimed to evaluate how these revisions will change the grading of HGRT and if it outperforms the original 1989 grading in predicting bleeding control interventions.MethodsData on HGRT were collected from 14 Level-1 trauma centers from 2014 to 2017. Patients with initial computed tomography scans were included. Two radiologists reviewed the scans to regrade the injuries according to the 1989 and 2018 AAST grading systems. Descriptive statistics were used to assess grade reclassifications. Mixed-effect multivariable logistic regression was used to measure the predictive ability of each grading system. The areas under the curves were compared.ResultsOf the 322 injuries included, 27.0% were upgraded, 3.4% were downgraded, and 69.5% remained unchanged. Of the injuries graded as III or lower using the 1989 AAST, 33.5% were upgraded to grade IV using the 2018 AAST. Of the grade V injuries, 58.8% were downgraded using the 2018 AAST. There was no statistically significant difference in the overall areas under the curves between the 2018 and 1989 AAST grading system for predicting bleeding interventions (0.72 vs. 0.68, p = 0.34).ConclusionAbout one third of the injuries previously classified as grade III will be upgraded to grade IV using the 2018 AAST, which adds to the heterogeneity of grade IV injuries. Although the 2018 AAST grading provides more anatomic details on injury patterns and includes important radiologic findings, it did not outperform the 1989 AAST grading in predicting bleeding interventions.Level of evidencePrognostic and Epidemiological Study, level III

    A General Black String and its Microscopics

    Get PDF
    Using G2(2) dualities we construct the most general black string solution of minimal five-dimensional ungauged supergravity. The black string has five independent parameters, namely, the magnetic one-brane charge, smeared electric zero-brane charge, boost along the string direction, energy above the BPS bound, and rotation in the transverse space. In one extremal limit it reduces to the three parameter supersymmetric string of five-dimensional minimal supergravity; in another extremal limit it reduces to the three parameter non-supersymmetric extremal string of five-dimensional minimal supergravity. It also admits an extremal limit when it has maximal rotation in the four-dimensional transverse space. The decoupling limit of our general black string is a BTZ black hole times a two sphere. The macroscopic entropy of the string is reproduced by the Maldacena-Strominger-Witten CFT in appropriate ranges of the parameters. When the pressureless condition is imposed, our string describes the infinite radius limit of the most general class of black rings of minimal supergravity. We discuss implications our solution has for extremal and non-extremal black rings of minimal supergravity.Comment: 35 pages; 3 figures; v2 section 4.1.1 rewritten + minor changes + ref adde

    Towards strange metallic holography

    Get PDF
    We initiate a holographic model building approach to `strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent zz appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarised branes, and from a gravitating charged Fermi gas. We also identify general features of renormalisation group flow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z2z \geq 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity.Comment: 71 pages, 8 figure

    How reliable are knee kinematics and kinetics during side-cutting manoeuvres?

    Get PDF
    INTRODUCTION: Side-cutting tasks are commonly used in dynamic assessment of ACL injury risk, but only limited information is available concerning the reliability of knee loading parameters. The aim of this study was to investigate the reliability of side-cutting data with additional focus on modelling approaches and task execution variables. METHODS: Each subject (n=8) attended six testing sessions conducted by two observers. Kinematic and kinetic data of 45° side-cutting tasks was collected. Inter-trial, inter-session, inter-observer variability and observer/trial ratios were calculated at every time-point of normalised stance, for data derived from two modelling approaches. Variation in task execution variables was regressed against that of temporal profiles of relevant knee data using one-dimensional statistical parametric mapping. RESULTS: Variability in knee kinematics was consistently low across the time-series waveform (≤5°), but knee kinetic variability was high (31.8, 24.1 and 16.9Nm for sagittal, frontal and transverse planes, respectively) in the weight acceptance phase of the side-cutting task. Calculations conveyed consistently moderate-to-good measurement reliability. Inverse kinematic modelling reduced the variability in sagittal (∼6Nm) and frontal planes (∼10Nm) compared to direct kinematic modelling. Variation in task execution variables did not explain any knee data variability. CONCLUSION: Side-cutting data appears to be reliably measured, however high knee moment variability exhibited in all planes, particularly in the early stance phase, suggests cautious interpretation towards ACL injury mechanics. Such variability may be inherent to the dynamic nature of the side-cutting task or experimental issues not yet known

    Multi-tiered external facilitation: the role of feedback loops and tailored interventions in supporting change in a stepped-wedge implementation trial

    Get PDF
    Background: Facilitation is a complex, relational implementation strategy that guides change processes. Facilitators engage in multiple activities and tailor efforts to local contexts. How this work is coordinated and shared among multiple, external actors and the contextual factors that prompt and moderate facilitators to tailor activities have not been well-described. Methods: We conducted a mixed methods evaluation of a trial to improve the quality of transient ischemic attack care. Six sites in the Veterans Health Administration received external facilitation (EF) before and during a 1-year active implementation period. We examined how EF was employed and activated. Data analysis included prospective logs of facilitator correspondence with sites (160 site-directed episodes), stakeholder interviews (a total of 78 interviews, involving 42 unique individuals), and collaborative call debriefs (n=22) spanning implementation stages. Logs were descriptively analyzed across facilitators, sites, time periods, and activity types. Interview transcripts were coded for content related to EF and themes were identified. Debriefs were reviewed to identify instances of and utilization of EF during site critical junctures. Results: Multi-tiered EF was supported by two groups (site-facing quality improvement [QI] facilitators and the implementation support team) that were connected by feedback loops. Each site received an average of 24 episodes of site-directed EF; most of the EF was delivered by the QI nurse. For each site, site-directed EF frequently involved networking (45%), preparation and planning (44%), process monitoring (44%), and/or education (36%). EF less commonly involved audit and feedback (20%), brainstorming solutions (16%), and/or stakeholder engagement (5%). However, site-directed EF varied widely across sites and time periods in terms of these facilitation types. Site participants recognized the responsiveness of the QI nurse and valued her problem-solving, feedback, and accountability support. External facilitators used monitoring and dialogue to intervene by facilitating redirection during challenging periods of uncertainty about project direction and feasibility for sites. External facilitators, in collaboration with the implementation support team, successfully used strategies tailored to diverse local contexts, including networking, providing data, and brainstorming solutions. Conclusions: Multi-tiered facilitation capitalizing on emergent feedback loops allowed for tailored, site-directed facilitation. Critical juncture cases illustrate the complexity of EF and the need to often try multiple strategies in combination to facilitate implementation progress
    corecore